

Evaluating Probability of Success in Oncology Clinical Trials

Martin King, Ph.D. Global Pharmaceutical R&D Abbott

Outline

- What is "success"?
- Probability of success vs. Power
- How does phase 2 affect the probability of success in phase 3?
- P(success) for binary data
- P(success) for time-to-event data
- Examples

Defining success

- Some possible definitions of success
 - P-value <0.05 vs. placebo
 - P-value <0.05 vs. placebo with efficacy ≥ competing drug</p>
 - P-value <0.05 vs. placebo with efficacy ≥ competing drug and better safety, tolerability, and convenience

Probability of Success vs. Power

(From protocol) Determination of Sample Size

Assuming a significance level of 0.05 and an effect size of 0.30, the planned sample size of 176 subjects per group provides 80% power to detect a difference between drug and placebo.

Voicemail from clinical team: "We need a trial with 90% power, but we can't afford to increase the sample size."

(From protocol) Determination of Sample Size

Assuming a significance level of 0.05 and an effect size of 0.30, the planned sample size of 176 subjects per group provides 80% power to detect a difference between drug and placebo.

(From protocol) Determination of Sample Size

Assuming a significance level of 0.05 and an effect size of 0.35, the planned sample size of 176 subjects per group provides 90% power to detect a difference between drug and placebo.

But what is truly the probability of a successful trial?

Power vs. P(Success)

- Power is a **conditional** value
 - Choose an effect size
 - Power is the probability of statistical significance if that is the true effect size
- The probability of success is an **unconditional** value
 - P(success) is the weighted average of the power across the range of possible effect sizes
 - Expected value of power

See O'Hagan A, et al (Pharm Stat 2005;4:187-201) or Chuang-Stein C (Pharm Stat 2006;5:305-9) for more detailed discussions of the probability of success

How do we calculate the probability of success?

- Phase 2 trial continuous endpoint
 - Drug vs. placebo, 20 subjects per arm
 - Mean difference is 0.3, SD is 1.0
 - Effect size = 0.3/1 = 0.3
- Naive approach to phase 3:
 - Effect size = 0.3
 - 176 subjects per group for 80% power
 - 235 subjects per group for 90% power
- But is 0.3 the right effect size?

What do we know about the effect size?

- The phase 2 study implies a distribution of possible treatment differences
- (Of note, this is the posterior distribution of the true treatment difference, given the phase 2 study results and a uniform prior)

The central problem

• The power curve is asymmetric

The central problem

• The power curve is asymmetric

Calculating P(success) = expected power

- E(power) = $\int P(\text{success}|\text{true diff}) P(\text{true diff}|\text{Ph2 diff}) d(\text{true diff})$
- Crude numerical integration:
 - ~17% chance of ~0% power
 - ~36% chance of ~100% power
 - ~47% chance of ~50% power
 - -17%(0) + 36%(1) + 47%(0.5) = 59.5%
- Exact answer
 - 60.8%

Probability of success

- d = observed difference in phase 2 study
- *s* = observed standard deviation in phase 2 study
- n_2 = number of subjects per group in phase 2 study
- n_3 = planned number of subjects per group in phase 3 study

Probability of success =
$$\Phi\left(\frac{d-1.96s\sqrt{\frac{2}{n_3}}}{s\sqrt{\frac{2}{n_2}+\frac{2}{n_3}}}\right)$$

(1-sided significance test at $\alpha = 0.025$)

How does Phase 2 impact Probability of Success in Phase 3?

- The problem is not the power curves!
 - Too much blue curve at small or negative values

• How do we move the blue curve?

Get a better drug: effect size of 0.6 instead of 0.3. With only n=88/arm in phase 3, P(success) is 81%

• More feasible: get a tighter estimate from Phase 2

- SD of treatment-difference curve is based on phase 2 sample size
 - $-\uparrow$ phase 2 sample size \rightarrow tighter estimate of effect size

- SD of treatment-difference curve is based on phase 2 sample size
 - $-\uparrow$ phase 2 sample size \rightarrow tighter estimate of effect size

- SD of treatment-difference curve is based on phase 2 sample size
 - $-\uparrow$ phase 2 sample size \rightarrow tighter estimate of effect size

Phase 3: n=176 per arm

Probability of success for binary data

Binary data example: tumor response rate

- Phase 2 study with 20 subjects per group
- Endpoint: Tumor response
- Results: Control 20%, Experimental drug 40%

- Naive phase 3 power calculation
 - Assume underlying response rates of 20% vs. 40%, 2-sided α =0.05
 - N=120/group provides 90% power
 - Does not account for uncertainty of response estimates

Complication with binary data

- Based on randomized trial, possible to construct posterior distribution for treatment difference
 - n=20 per arm, 20% vs. 40% response rate
- But problems arise computing expected value of power

Complication with binary data

- To do the numerical integration, need to calculate power at each point across the distribution
 - Consider a specific point on the curve (difference of 10%, e.g.)
 - Since SD varies with specific rates, not possible to calculate power knowing only the difference in response rates
 - For a given sample size, power for 20% vs. 10% is higher than for 50% vs. 40%

Uncertainty of response rate estimates

- How do we account for uncertainty of response rate estimates?
 - Consider Beta distribution to approximate the binomial for each group: Beta(α , β), where
 - $\alpha = #$ of responders
 - $\beta = #$ non-responders
 - Control group (4 responders out of 20):
 - Experimental group (8 responders out of 20): Beta(8, 12)

Beta(4, 16)

Beta distribution vs. normal approximation

Simulations to compute P(success) for phase 3

- $P(success) = P(p-value \le 0.05) = E(Power)$
 - 1. Select response rate at random from each Beta distribution
 - 2. Calculate power based on selected response rates
 - 3. Repeat 1000 times (or 10,000, or 100,000)
 - 4. Compute average power across simulation runs

Simulation results

- Based on Phase 3 sample size of 120/group, P(success) = 66%
- Recall N=120/group provides <u>90%</u> power in naive calculation that does not account for uncertainty in 20% vs. 40% response rates

Probability of success for timeto-event data

Phase 2 Study with time-to-event endpoint: Example

Probability of success for time-to-event data

 Simple implementation of probability of success – make use of the normal approximation for the log-hazard ratio

 $\log(hr) \sim N(\log(hr_2), 4/n_{e2})$

- Where
- hr_2 = observed hazard ratio in phase 2 study
- n_{e2} = number of events in phase 2 study

Probability of success for time-to-event data

• Then the probability of success of the phase 3 trial (one-sided test at $\alpha = 0.025$) is

$$P(success) = P(\hat{\log(hr)} < -\sqrt{4/n_{e3}} \cdot 1.96) = \Phi\left(\frac{-\sqrt{4/n_{e3}} \cdot 1.96 - \log(hr_2)}{\sqrt{4/n_{e3}} + 4/n_{e2}}\right)$$

- Where
- hr_2 = observed hazard ratio in phase 2 study
- n_{e2} = number of events in phase 2 study
- n_{e3} = planned number of events in phase 3 study

Example – Phase 3 time-to-event study

- Naive power estimate: If the true hazard ratio is 0.656, then 236 events provides 90% power
- Probability of success:
 - $hr_2 = 0.656 = observed hazard ratio in phase 2 study$
 - $n_{e2} = 80$ = number of events in phase 2 study
 - n_{e3} = 236 = planned number of events in phase 3 study

$$\mathsf{P}(\mathsf{success}) = \Phi\left(\frac{-\sqrt{4/236} \cdot 1.96 - \log(0.656)}{\sqrt{4/236 + 4/80}}\right) = 74.0\%$$

Probability of success for time-to-event data: a more general formulation

- Problem: may not always have a direct estimate of the hazard ratio
 - Single-arm phase 2 study
 - Historical data for phase 3 control arm
- Solution: Exponential Inverse Gamma Model:
 - For exponential survival with parameter λ , let

 $\lambda \sim Inverse-gamma(a,b)$

- where a = number of events and b = total follow-up time.

Inverse gamma

• Then for the two arms in the phase 2 study

 $-\lambda_{control} = IG(44,438)$ Mean survival = 438/44 = 9.95 Median = 9.95 * log(2) = 6.9

 $- \lambda_{experimental} = IG (36/547)$

Mean survival = 547/36 = 15.2Median = $15.2 * \log(2) = 10.5$

Calculating P(success) from inverse-gamma model: Simulation Algorithm

- 1. Randomly draw a mean survival time from each inversegamma distribution.
- 2. "Enroll" patients into the study according to a certain accrual rate and randomize to experimental or control arm.
- 3. Draw event times randomly from the corresponding exponential distributions. Censor patients without events the end of the study.
- 4. Compare survival curves of experimental vs. control arms after the planned number of events is obtained.
- Repeat steps 1 4 for a large number of replications K.
 Probability of success is calculated as number of times the trial results in a successful outcome total number of replications K.

Summary of time-to-event data

- Time-to-event data have additional features and complexities compared to continuous (uncensored) data
- But the approach to assess the probability of success with timeto-event data is conceptually similar to that with other types of data
- The Bayesian framework used here can easily incorporate additional success criteria beyond the requirement of a p-value <0.05

Examples

Example 1 Using P(success) to decide when to begin Phase 3

- 2nd-line or later treatment for a particular tumor type
- Uncontrolled Phase 2 study of experimental drug
- Endpoint: Response rate
- Standard of care: 9% response rate in prior uncontrolled trial of 90 subjects (8/90 subjects with partial response)
- Sample size: N=40
- Goal: determine whether to run a phase 3 study vs. the standard of care
 - Two phase 3 sample sizes considered: N=40/group or N=200/group

Standard of care treatment – historical data

- Standard of care: 9% response rate in prior uncontrolled trial of 90 subjects (8/90 subjects with partial response)
- Suggests a Beta(8, 82) distribution to characterize control arm
 - 8 responders
 - 82 non-responders

Prior Distribution for Standard of Care

Establishing beliefs about response rate for experimental drug

• Suppose 2 responders in first 5 subjects

2/5 Responses in Experimental Arm

What do we know after 2/5 responses?

- Naive power calculation
 - N=40/arm in phase 3 study provides 86% power if the true rates are 9% (control) vs. 40% (experimental)
- To get probability of success (p<0.05 in phase 3 study), simulate:
 - Select response rates from Beta(8,82) and Beta(2,3) distributions
 - Compute power based on N=40/group
 - Repeat a large number of times calculate average power
- With N=40/arm, P(success) = 68%
- With N=200/arm, P(success) = 99%

P(success) of phase 3 study after 5 subjects in phase 2 study

- P(success)
 - Select response rate at random from each Beta distribution
 - Calculate power based on selected response rates
 - Repeat 1000 times (or 10,000, or 100,000)
 - Compute average power across simulation runs

Phase 2 outcome (# of responses out of 5 subjects)	P(superiority) in phase 3 study at n=40/arm	P(superiority) in phase 3 study at n=200/arm	
1 (20%)	0.28	0.49	
2 (40%)	0.68	0.87	
3 (60%)	0.91	0.99	

Strength of evidence vs. sample size

- Our beliefs about the true response rate for the experimental drug get stronger with more subjects
 - 40% response rate based on 5, 10, and 20 subjects →

Response Probability

4/10 Responses

8/20 Responses

P(success) of phase 3 study after 10 subjects in phase 2 study

Phase 2 outcome (# of responses out of 10 subjects)	P(superiority) in phase 3 study at n=40/arm	P(superiority) in phase 3 study at n=200/arm
1 (10%)	0.10	0.27
2 (20%)	0.28	0.57
3 (30%)	0.51	0.81
4 (40%)	0.74	0.94
5 (50%)	0.88	0.98
6 (60%)	0.96	0.99

P(success) of phase 3 study after 20 subjects in phase 2 study

Phase 2 outcome (# of responses out of 20 subjects)	P(superiority) in phase 3 study at n=40/arm	P(superiority) in phase 3 study at n=200/arm
2 (10%)	0.08	0.24
3 (15%)	0.16	0.43
4 (20%)	0.27	0.64
5 (25%)	0.41	0.79
6 (30%)	0.55	0.90
7 (35%)	0.67	0.95
8 (40%)	0.77	0.98
9 (45%)	0.86	0.99

P(success) in Phase 3 by Phase 2 response rate

n=40/arm in Phase 3

n=200/arm in Phase 3

Example 2 Using P(success) to evaluate a development plan

- Randomized phase 2 study is about to start
 - Primary endpoint: overall survival, 30% improvement considered clinically meaningful
 - Number of events in phase 2 study: 40 vs. 60. vs. 80 vs. 100?
 - Company willing to run a 460-event phase 3 study (80% power for a true improvement of 30%) if P(success) is high enough
 - What is a "high enough" probability of success?

Outcome	Considerations
Win in phase 2	Probability, date of approval
Lose in phase 2 (stop development)	Probability, study cost, P(type II error) (stopping development if drug actually works)
Continue to phase 3 and win	Probability, date of approval
Continue to phase 3 and lose	Probability, study cost

P(success) for the phase 3 study based on phase 2 results

• Based on 460-event phase 3 trial:

Observed %		P(success) in Phase 3 for given observed % improvement and given # of events in Phase 2					
improvement	Observed HR	20	40	60	80	100	120
25.0%	0.8000	0.535	0.549	0.558	0.566	0.573	0.578
30.0%	0.7692	0.569	0.595	0.614	0.629	0.641	0.651
35.0%	0.7407	0.601	0.639	0.665	0.686	0.703	0.716
40.0%	0.7143	0.632	0.679	0.712	0.737	0.757	0.773
45.0%	0.6897	0.660	0.717	0.754	0.782	0.804	0.821
50.0%	0.6667	0.687	0.750	0.791	0.821	0.844	0.861

- What should the rule be to move into phase 3?
 - P(success) >80%?
 - P(success) >75%?
 - P(success) >60%?

Probability of each outcome in phase 2 or phase 3

- Assumptions
 - Conduct phase 3 study if P(success) is at least 75%
 - true HR is 0.7692 (30% improvement)
 - 40-event phase 2 study
 - 460-event phase 3 study
 - P(win in Phase 2)
 - P(stop after Phase 2)

P(continue to Phase 3 and win)

P(continue to Phase 3 and lose)

= P(observed HR < 0.536) = 0.13

= P(observed HR
$$\ge$$
 0.667) = 0.67

$$= 80\% * (1 - 0.13 - 0.67) = 0.16$$

$$= 20\% * (1 - 0.13 - 0.67) = 0.04$$

Probability of each outcome by phase 3 decision rule and true underlying hazard ratio

• Phase 2 design: 40-event study

	Run phase 3 if P(success) is >75%			Run phase 3 if P(success) is >60%		
	True HR				True HR	
Outcome	1.000	0.769	0.667	1.000	0.769	0.667
Win in phase 2	0.025	0.13	0.25	0.025	0.13	0.25
Stop after phase 2	0.90	0.67	0.50	0.80	0.51	0.33
Win in phase 3	0.00	0.16	0.25	0.00	0.29	0.42
Lose in phase 3	0.07	0.04	0.00	0.17	0.07	0.00

Probability of each outcome by phase 3 decision rule and true underlying hazard ratio

• Phase 2 design: 100-event study

	Run phase 3 if P(success) is >75%			Run phase 3 if P(success) is >60%		
	True HR				True HR	
Outcome	1.000	0.769	0.667	1.000	0.769	0.667
Win in phase 2	0.025	0.26	0.53	0.025	0.26	0.53
Stop after phase 2	0.95	0.64	0.36	0.88	0.45	0.20
Win in phase 3	0.00	0.09	0.12	0.00	0.23	0.27
Lose in phase 3	0.02	0.02	0.00	0.09	0.06	0.00

Assigning value to each outcome

- Model inputs
 - 40-event phase 2 study
 - true HR = 0.7692 (30% improvement)
- Model output

- Study cost assumptions:
 - -40-event study = 4 MM
 - -100-event study = 10 MM
 - Phase 3 study = 50 MM

Outcome	P(outcome) (60% rule)	P(outcome) (75% rule)	Timing of outcome	Value
Win in phase 2	0.13	0.13	Approval in 2Q2014	XXX MM
Stop after phase 2	0.51	0.67	Study ends in 2Q2013	–4 MM
Win in phase 3	0.29	0.16	Approval 2Q2018	YYY MM
Lose in phase 3	0.07	0.04	Study ends 1Q2017	–54 MM

Expected value (60% rule) = 0.13(XXX) + 0.51(-4) + 0.29(YYY) + 0.07(-54)Expected value (75% rule) = 0.13(XXX) + 0.67(-4) + 0.16(YYY) + 0.04(-54)

Extensions

- How do different beliefs about the drug's efficacy affect expected value?
 - Individual 1 believes there's 50% chance the drug has no efficacy (HR=1.0) and a 50% chance the drug gives a 30% improvement (HR=0.769)
 - Individual 2 believes there's 75% chance the drug has no efficacy (HR=1.0) and a 25% chance the drug gives a 30% improvement (HR=0.769)
- Calculate weighted average of the expected values for HR=1.00 and HR=0.769 and compare between individuals

Closing remarks

Complications

- Phase 3 is just like phase 2, except
 - Different year
 - Different sites
 - Different dose?
 - Different design
 - Different endpoint
 - Different formulation
 - Different inclusion criteria
 - Different statistical analysis
- Furthermore, development programs rarely consist of a single phase 2 study and a single phase 3 study

Conclusions

- Remember that
 - Power is a conditional value (more importantly, remind your clinical team)
 - The foundation for success in phase 3 is built in phase 2
 - The optimal probability of success may or may not be the familiar 80% or 90%

O'Hagan A, et al. Pharm Stat 2005;4:187-201.

Chuang-Stein C. Pharm Stat 2006;5:305-9.

